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Abstract For the nonsymmetric algebraic Riccati equation, we establish a new lin-
earized implicit iteration method (LI) for computing its minimal nonnegative solu-
tion. And a modified linearized implicit iteration method (MLI) is obtained through
Shamanskii technique. Under suitable conditions, we prove the monotone conver-
gence of the LI and MLI iteration methods. Numerical experiments show that the LI
and MLI iteration methods are feasible and effective. Moreover, the MLI iteration
method outperforms the alternately linearized implicit iteration method (in: Bai et al.,
Numer. Linear Algebr. Appl. 13:655–674, 2006).
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1 Introduction

We study numerical solution of the nonsymmetric algebraic Riccati equation (NARE)

R(X) = XCX − XD − AX + B = 0, (1)
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where A, B,C and D are real matrices of sizes m × m,m × n, n × m and n × n,
respectively.

We define the matrix

K =
(

D −C
−B A

)
. (2)

When K is a nonsingular M-matrix or an irreducible M-matrix, the NARE (1) has
a minimal nonnegative solution [10,15]. The NARE (1) that arises in applied proba-
bility and transportation theory has been studied for years, see [1,3,4,6,7,17,22,23,
25,26,29,31] and the references therein. Numerical methods for finding the mini-
mal nonnegative solution of the NARE (1) include the alternately linearized implicit
iteration method[2], the basic fixed-point iteration method and the Newton iteration
method [14], the Schur method [11], the structure-preserving doubling algorithm [16]
and the alternating-directional doubling algorithm [30]. For more other methods see
[5,9,12,13,18–21,24,28] and the references therein.

Recently, Bai [2] has shown that the alternately linearized implicit iteration method
(ALI) was a feasible and effective solver for the NARE (1). Besides, ALI has com-
parable computing cost and fast convergence rate. Based on the ALI, we establish a
linearized implicit iteration method (LI) for computing the minimal nonnegative solu-
tion of the NARE (1). Taking advantage of the simple structure of LI iteration method
and the idea of Shamanskii technic [27], we get a modified linear implicit iteration
method (MLI), which has less computing cost and faster convergence speed than ALI
iteration method. Under suitable conditions, we prove the monotone convergence of
the LI and MLI iteration methods. Numerical experiments show that LI is a feasible
and effective iteration method, and can perform as well as the ALI iteration method.
Besides, the MLI iteration method can outperform the ALI iteration method.

This paper is organized as follows. InSect. 2,we introduce somenecessary notations
and lemmas. We establish the LI and MLI iteration methods in Sect. 3. In Sect. 4, we
prove the monotone convergence of the LI and MLI iteration methods. Numerical
results are given in Sect. 5. Finally, we draw a brief conclusion in Sect. 6.

2 Notations and lemmas

Throughout this paper, we use the following definitions and notations. In denotes the
identity matrix with dimension n. For two matrices A = (ai j ), B = (bi j ) ∈ �m×n ,
we write A ≥ B(A > B) if ai j ≥ bi j (ai j > bi j ) holds for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. A matrix A ∈ �m×n is said to be nonnegative (positive) if its entries
satisfy ai j ≥ 0(ai j > 0) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. A matrix A ∈ �m×n is said
to be a Z -matrix if all of its off-diagonal elements are non-positive. It follows that any
Z -matrix A can be written as the form A = s I − B, with s a positive real number and
B a non-negative matrix. A Z -matrix A ∈ �n×n is called an M-matrix if s ≥ ρ(B),
where ρ(B) denotes the spectral radius of B. It is called a nonsingular M-matrix if
s > ρ(B) and a singular M-matrix if s = ρ(B). ‖ · ‖∞ denotes the ∞-norm of a
matrix.

The following lemmas describe several important properties about a nonsingular
M-matrix.
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Lemma 1 (see [2]) Let A ∈ �n×n be a Z-matrix. Then the following statements are
equivalent:

(1) A is a nonsingular M-matrix;
(2) A−1 ≥ 0;
(3) Aν > 0 for some positive vector ν ∈ �n;
(4) All eigenvalues of A have positive real parts.

Lemma 2 (see [2]) Let A ∈ �n×n be a nonsingular M-matrix. If the matrix B =
(bi j ) ∈ �n×n satisfies

bii ≥ aii , ai j ≤ bi j ≤ 0, i �= j, 1 ≤ i, j ≤ n

then B also is a nonsingular M-matrix. In particular, for any positive real θ ,B =
θ I + A is a nonsingular M-matrix.

Lemma 3 (see [2]) Let A, B ∈ �n×n be nonsingular M-matrices satisfying A ≤ B,
Then A−1 ≥ B−1

Lemma 4 (see [2]) If K in (2) is a nonsingular M-matrix, then the NARE (1) has a
minimal nonnegative solution S such that both matrices D − CS and A − SC are
nonsingular M-matrices. Moreover, any solution S∗ of the NARE (1) such that both
matrices D − CS∗ and A − S∗C are nonsingular M-matrices must satisfy S∗ = S.

3 The LI iteration method and MLI iteration method

The ALI iteration method [2] has comparable computing cost and fast convergence
rate for solving the NARE (1), whose advantage over the fixed-point iteration method
is that the ALI may has faster convergence rate and better numerical behaviour as it
is more implicit and has exploited more information from the nonlinear term XCX .

We have known the following alternately linearized implicit iteration method for
solving the NARE (1): Set X0 = 0 ∈ �m×n , for k = 0, 1, 2, . . . until {Xk} conver-
gence, compute Xk+1 from Xk by solving the following two systems of linear matrix
equations:

Xk+ 1
2
(α I + (D − CXk)) = (α I − A)Xk + B, (3)(

α I + (A − Xk+ 1
2
C)

)
Xk+1 = Xk+ 1

2
(α I − D) + B, (4)

where α ≥ max{ max
1≤i≤m

{aii }, max
1≤ j≤n

{d j j }}.
Motivated by the ALI iteration method, we present a linearized implicit iteration

method by reformulating the NARE (1) as the following equation:

(α I + (A − XC)) X = X (α I − D) + B, (5)

where α is a given positive parameter.
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Then the following iteration equation is built:

(α I + (A − XkC)) Xk+1 = Xk(α I − D) + B, (6)

where α is a given positive iteration parameter.
The linearized implicit iterationmethod only needs to solve a linearmatrix equation

at each iteration step. Hence, it has comparable computing cost and fast convergence
rate. For m = n, the computing cost at each iteration step of the LI iteration method is
20
3 n

3 +O(n2) [8]. The linearized implicit iteration is similar to the ALI iteration, but
it has a more simple structure. So the LI iteration method may be a good numerical
algorithm for solving the NARE (1) in practical.

We find that the Eq. (6) is similar to the Eq. (4) which is the subproblem of the ALI
iteration method. Obviously, we can get another LI iteration method: for given Xk , by
solving Xk+1 from

Xk+1 (α I + (D − CXk)) = (α I − A)Xk + B (7)

where α is a given positive iteration parameter.
By observing the structure of (6), the most of computing cost at each iteration

step is spent on computing the inverse of (α I + (A − XkC)). To further reduce the
computing cost, we derived amodified LI iterationmethod (MLI) by using Shamanskii
technique.

Hence, we have some following iteration equalities: for given s ≥ 1 and k =
0, 1, 2, . . . ,

Xk,1 = (α I + (A − Xk,0C))−1(Xk,0(α I − D) + B),

Xk,q+1 = (α I + (A − Xk,0C))−1(Xk,q(α I − D) + B), 1 ≤ q ≤ s − 1,

Xk+1 = Xk,s, (8)

where Xk,0 = Xk .
The algorithm of the modified linearized implicit iteration method:

Algorithm 1 (The modified linearied implicit iteration)
Step1 Input matrices A, B,C and D. Choose parameters α, ε, and s such that

α ≥ max

{
max
1≤i≤m

{aii }, max
1≤ j≤n

{d j j }
}

, ε = 10−12, s ≥ 1. Set k := 0;

Step2 Compute R(Xk), if ‖R(Xk)‖F ≤ ε, stop. Otherwise, go to step3.
Step3 Get Xk+1 by solving the iteration the equalities (8).
Step4 Set k:=k+1 and go to step2.

Remark 1 In general, the optimal parameter s is difficult to be determined. So we set
s = 4 or s = 6 in the MLI iteration method to reduce computing cost.
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4 Convergence analysis

Lemma 5 Suppose that S is theminimal nonnegative solution of the NARE (1).Matrix
sequence {Xk} is generated by LI iteration method. Then the following equalities hold
true:

(a) (α I + (A − XkC))(Xk+1 − S) = (Xk − S)(α I − (D − CS))

(b) (α I + (A − XkC))(Xk+1 − Xk) = R(Xk)

(c) R(Xk+1) = (Xk+1 − Xk)(α I − (D − CXk+1))

Proof (a) Making use of (6), we get

(α I + (A − XkC))(Xk+1 − S) = (α I + (A − XkC))Xk+1 − (α I + (A − XkC))S

= Xk(α I − D) + B − (α I + (A − XkC))S

= α(Xk − S) − XkD + XkCS + B − AS. (9)

Since S is the minimal nonnegative solution of the NARE (1), we obtain

R(S) = SCS − SD − AS + B = 0,

i.e.,

B − AS = SD − SCS.

By substituting this identity into the Eq. (9), we immediately obtain

(α I + (A − XkC))(Xk+1 − S) = α(Xk − S) − XkD + XkCS + SD − SCS

= (Xk − S)(α I − (D − CS)).

(b) Equality (b) follows from straightforward computations. In fact, it holds that

(α I + (A − XkC))(Xk+1 − Xk) = (α I+(A−XkC))Xk+1 − (α I+(A − XkC))Xk

= Xk(α I − D) + B − αXk − AXk + XkCXk

= −XkD + B − AXk + XkCXk

= R(Xk).

(c) Making use of (6), we have

αXk+1 + AXk+1 − Xk+1CXk+1 = (α I+(A − XkC))Xk+1 − (Xk+1 − Xk)CXk+1

= Xk(α I − D) + B − (Xk+1 − Xk)CXk+1

= αXk − XkD + B − (Xk+1 − Xk)CXk+1.
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It then follows that

R(Xk+1) = Xk+1CXk+1 − AXk+1 − Xk+1D + B

= αXk+1 − αXk + (Xk+1 − Xk)CXk+1 − Xk+1D

= (Xk+1 − Xk)(α I − (D − CXk+1)).

So far, we have completed the whole proof. 
�
Lemma 6 Suppose that S is a solution of theNARE (1), thematrix subsequence {Xk,0}
and {Xk,1} are generated by MLI iteration method. Then the following equalities hold
true:

(a) (α I + (A − Xk,0C))(Xk,1 − S) = (Xk,0 − S)(α I − (D − CS));
(b) (α I + (A − Xk,0C))(Xk,1 − Xk,0) = R(Xk,0);
(c) R(Xk,1) = (Xk,1 − Xk,0)(α I − (D − CXk,1)).

Proof The proof of this remark is analogous to that of Lemma (5). 
�
Theorem 1 Suppose that the matrix K defined in (2) is a nonsingular M-matrix, and
S is the minimal nonnegative solution of the NARE (1). The initial matrix X0 = 0 and
α is a prescribed iteration parameter such that

α ≥ max

{
max
1≤i≤m

{aii }, max
1≤ j≤n

{d j j }
}

where aii and dii are the i th diagonal elements of the matrices A and D, respectively.
Then the matrix sequence {Xk} generated by LI iteration method is well defined, and
it holds that

(a) {Xk} is bounded and monotone increasing, i.e.,

0 ≤ X0 ≤ X1 ≤ · · · ≤ Xk ≤ Xk+1 ≤ · · · ≤ S

(b) {Xk} is convergent to S, i.e., lim
k→∞ Xk = S.

Proof Notice that K is a nonsingularM-matrix, its diagonalmatrices A and D are non-

singular M-matrix and B,C ≥ 0. Hence, when α ≥ max
{

max
1≤i≤m

{aii }, max
1≤ j≤n

{d j j }
}
,

the matrix α I − D is a nonnegative matrix.
The result (a) is equivalent to the following conclusion:

0 ≤ Xk ≤ Xk+1 ≤ S, R(Xk) ≥ 0, k = 0, 1, 2 · · · .

We can prove above conclusion by induction. When k = 0, we have R(X0) = B ≥ 0.
And by substituting X0 = 0 into (6) and lemma 5 (a), we get

(α I + A)X1 = B and (α I + A)(X1 − S) = (−S)(α I − (D − CS)).
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As the matrix A is a nonsingular M-matrix, the matrix α I + A also is a nonsingular
M-matrix from Lemma 2. So

X1 = (α I + A)−1B ≥ 0 = X0

and

X1 − S = −(α I + A)−1S(α I − (D − CS)) ≤ 0.

These show that 0 ≤ X0 ≤ X1 ≤ S and R(X0) ≥ 0.
Assume that the conclusion holds for k = l − 1, i.e., 0 ≤ Xl−1 ≤ Xl ≤ S and

R(Xl−1) ≥ 0. Since C ≥ 0, it then follows that

A − SC ≤ A − XlC ≤ A.

By making use of Lemma 2, we know that A − XlC and α I + (A − XlC) are both
nonsingular M-matrices. Then from lemma 5, we have

(Xl+1 − S) = (α I + (A − XlC))−1(Xl − S)(α I − (D − CS)),

Xl+1 − Xl = (α I + (A − XlC))−1R(Xl),

R(Xl) = (α I + (A − Xl−1C))(Xl − Xl−1).

Notice that (α I + (A − XlC))−1 ≥ 0 and α I − (D −CS) ≥ 0, it’s easily to get that

0 ≤ Xl ≤ Xl+1 ≤ S and R(Xl) ≥ 0.

Hence, we have proved the result (a) by induction.
Nowwe come to prove (b). Because {Xk} is nonnegative,monotonically increasing,

and bounded from above, there exists a nonnegativematrix S∗ such that lim
k→∞ Xk = S∗.

Obviously, the above result implies S∗ ≤ S. On the other hand, by taking limits in (6),
we see that S∗ also is a nonnegative solution of NARE (1). Hence, it must hold that
S ≤ S∗ due to the minimal property of S. It then follows that S∗ = S. 
�

We have proved that the matrix sequence {Xk} generated by LI iteration method
converges monotonically to the minimal nonnegative of the NARE (1). In the sequel,
the convergence of MLI iteration method will be analyzed.

Theorem 2 Suppose that K defined in (2) is a nonsingular M-matrix, S is theminimal
nonnegative solution of the NARE (1). Set the initial matrix X0 = 0 and α is a
prescribed iteration parameter such that

α ≥ max

{
max
1≤i≤m

{aii }, max
1≤ j≤n

{d j j }
}

where aii and dii are the i th diagonal elements of the matrices A and D, respectively.
For k = 0, 1, 2, . . ., s ≥ 1, matrix sequence {Xk,q}(0 ≤ q ≤ s) generated by the MLI
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iteration method, if 0 ≤ Xk,0 ≤ S, R(Xk,0) ≥ 0, then

0 ≤ Xk,q−1 ≤ Xk,q ≤ S, R(Xk,q) ≥ 0 holds f or 1 ≤ q ≤ s.

Proof Notice that K is a nonsingular M-matrix, whose main diagonal blocks A and D

are nonsingular M-matrix and B,C ≥ 0. Therefore, for α ≥ max
{

max
1≤i≤m

{aii }, max
1≤ j≤n

{d j j }
}
, the matrix α I − D also is a nonnegative matrix.

Since 0 ≤ Xk,0 ≤ S and C ≥ 0, we have

A − SC ≤ A − Xk,0C ≤ A.

Thus, A−Xk,0C andα I+(A−Xk,0C) are both nonsingularM-matrices fromLemma
2 and Lemma 4. By the MLI iteration method and Lemma 6, we obtain that

Xk,1 − Xk,0 = (α I + (A − Xk,0C))−1R(Xk,0),

Xk,1 − S = (α I + (A − Xk,0C))−1(Xk,0 − S)(α I − (D − CS)),

R(Xk,1) = (Xk,1 − Xk,0)(α I − (D − CXk,1)),

for given k > 0.
Since 0 ≤ Xk,0 ≤ S, R(Xk,0) ≥ 0, we get

Xk,1 − Xk,0 ≥ 0, i.e., Xk,1 ≥ Xk,0,

Xk,1 − S ≤ 0, i.e., Xk,1 ≤ S.

and

R(Xk,1) ≥ 0.

Hence, the conclusion holds true for q = 1.
Assume that the conclusion holds true for all q ≤ l − 1 (2 ≤ l ≤ s + 1), i.e.,

0 ≤ Xk,q−1 ≤ Xk,q ≤ S, R(Xk,q) ≥ 0 holds f or 1 ≤ q ≤ l − 1.

By MLI iteration method, we get

(
α I + (A − Xk,0C)

)
Xk,l = Xk,l−1(α I − D) + B,

i.e.,

Xk,l = (
α I + (A − Xk,0C)

)−1
(Xk,l−1(α I − D) + B).

123



www.manaraa.com

LI for nonsymmetric algebraic Riccati equations 235

As α I − D ≥ 0, B ≥ 0 and Xk,l−1 ≥ Xk,l−2, we have

Xk,l ≥ (
α I + (A − Xk,0C)

)−1
(Xk,l−2(α I − D) + B) = Xk,l−1.

In addition,

(α I+(
A−Xk,0C)

)
(Xk,l−S) = (

α I+(A−Xk,0C)
)
Xk,l−

(
α I+(A−Xk,0C)

)
S

= Xk,l−1(α I − D) − αS + Xk,0CS + B − AS

= α(Xk,l−1 − S) − Xk,l−1D+Xk,0CS+SD−SCS

≤ α(Xk,l−1 − S)−Xk,l−1D+Xk,l−1CS+SD−SCS

= (Xk,l−1 − S)(α I − (D − CS)) ≤ 0.

Hence, 0 ≤ Xk,l−1 ≤ Xk,l ≤ S.
According to the MLI iteration method, we get

αXk,l + AXk,l − Xk,lC Xk,l = (
α I + (A − Xk,0C)

)
Xk,l − (Xk,l − Xk,0)CXk,l

= Xk,l−1(α I − D) + B − (Xk,l − Xk,0)CXk,l

= αXk,l−1 − Xk,l−1D + B − (Xk,l − Xk,0)CXk,l

As Xk,l−1 ≥ Xk,0, it follows that

R(Xk,l) = Xk,lC Xk,l − AXk,l − Xk,l D + B

= αXk,l − αXk,l−1 + (Xk,l − Xk,0)CXk,l − Xk,l D + Xk,l−1D

≥ (Xk,l − Xk,l−1)
(
α I − (D − CXk,l)

)
≥ 0

By the principle of induction, 0 ≤ Xk,q−1 ≤ Xk,q ≤ S and R(Xk,q) ≥ 0 holds for
1 ≤ q ≤ s. 
�
Theorem 3 Suppose that the matrix K defined in (2) is a nonsingular M-matrix and
S is the minimal nonnegative solution of the NARE (1). Let the initial matrix X0 = 0
and α is a prescribed iteration parameter such that

α ≥ max

{
max
1≤i≤m

{aii }, max
1≤ j≤n

{d j j }
}

where aii and dii are the i th diagonal elements of the matrices A and D, respectively.
Then the matrix sequence {Xk} generated by MLI iteration method is well defined,
and it holds that

(a) 0 ≤ X0 ≤ X1 ≤ · · · ≤ Xk ≤ S and R(Xk) ≥ 0
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(b) Xk is convergent to S, i.e., lim
k→∞ Xk = S.

Proof According to theMLI iterationmethod, we know that Xk is equivalent to Xk−1,s
or Xk,0. Since X0 = 0 ≤ S and R(X0) = B ≥ 0,we get S ≥ X1 = X0,s ≥ X0,0 = X0
and R(X1) = R(X0,s) ≥ 0 from Theorem 2. Hence, the conclusion (a) is true for
k = 1.

Assume that the conclusion (a) is true for k = l − 1, i.e.,

0 ≤ X0 ≤ X1 ≤ · · · ≤ Xl−1 ≤ S and R(Xl−1) ≥ 0.

Taking advantage of the Theorem 2, it’s easily to get that

S ≥ Xl = Xl−1,s ≥ Xl−1,0 = Xl−1 and R(Xl) = R(Xl−1,s) ≥ 0,

which shows that 0 ≤ X0 ≤ X1 ≤ · · · ≤ Xl ≤ S and R(Xl) ≥ 0.
By the principe of induction, the result (a) is true.
We now turn to prove the conclusion (b). Because matrix sequence {Xk} is nonneg-

ative, monotonically increasing, and bounded from above, there exists a nonnegative
matrix S∗ such that lim

k→∞ Xk = S∗. Obviously, the above result implies S∗ ≤ S. On

the other hand, by taking limits in (6), we see that S∗ is also a nonnegative solution of
NARE (1). Hence, it must hold that S ≤ S∗ due to the minimal property of S. It then
follows that S∗ = S. 
�

We have completed the convergence analysis of the LI and MLI iteration methods.
In addition, if matrix sequences {Xk} is generated by MLI iteration method and {X̃k}
is generated by LI iteration method, we can see that Xk ≤ X̃k from the proof of
Theorems 1, 2 and 3. Therefore, the convergence rate of the MLI iteration method is
faster than the LI iteration method.

5 Numerical results

In this section, we use three examples to show the numerical feasibility and effective-
ness of the LI andMLI iterationmethods. The numerical behaviours of the LI andMLI
iteration methods will be compared with the ALI iteration method with respect to the
number of iteration steps (IT), the computing times (CPU) and the relative residual
error (denoted by ERR, where ERR= ‖�(Xk)‖∞/‖�(X0)‖∞).

All implementations are run in MATLAB R2010b (7.11) on a personal computer
CORE i5. In actual computations, each iteration is terminated when the current iterate
satisfies ERR< 10−12.

Example 1 (see [2]) We consider the NARE (1), for which

A = D = Tridiag(−I, T,−I ) ∈ �n×n
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Table 1 Numerical results of
Example 1 when
m = 16, n = 256

Method ALI LI MLI (s = 4) MLI (s = 6)

ξ = 0.2 IT 44 87 22 15

CPU 1.4535 1.8776 0.8211 0.7503

RES 5.25e−13 7.28e−13 5.32e−13 2.81e−13

ξ = 0.5 IT 44 87 22 15

CPU 1.5224 1.9529 0.838655 0.7840

RES 5.52e−13 7.66e−13 5.72e−13 3.12e−13

ξ = 1.0 IT 44 87 22 15

CPU 1.4636 1.8421 0.8307 0.7851

RES 5.98e−13 8.28e−13 6.41e−13 3.65e−13

are block tridiagonal matrices,

B = 1

50
tridiag(1, 2, 1) ∈ �n×n

is a tridiagonal matrix andC = ξ B, where ξ is a positive constant such that K defined
in (2) is a nonsingular M-matrix. Here,

T = tridiag

(
− 1, 4 + 200

(m + 1)2
,−1

)
∈ �m×m

and n = m2.

We take m = 16, X0 = 0 and set α = 4 + 200
(m+1)2

. The numerical results for this
example are listed in table 1.

From Table 1, we see that all iterations can converge rapidly to the exact minimal
non-negative solution of NARE (1) with high accuracy. According to the iteration
step, the MLI (s = 6) iteration method is the least. Besides, the iteration steps of the
ALI iteration method are almost half of the LI iteration method and twice of the MLI
(s = 4) iterationmethod. According to the computing times, theMLI (s = 6) iteration
method also is the least and the LI iteration method is the longest for the increasing of
iteration steps. According to the iteration equalities (3), (4), (6) and (8), the computing
cost of ALI is twice of the LI iterationmethod andmore than theMLI iterationmethod.
Therefore, with respect to the computing efficiency, the LI iteration method is as well
as the ALI iteration method and the MLI iteration method outperforms the ALI and
LI iteration methods in large matrices computation. Moreover, when ξ or C becomes
large, the iteration numbers and computing time of the LI and MLI iteration methods
are almost fixed. This shows that the LI and MLI iteration methods could successfully
solve the NARE (1). Finally, the MLI (s = 6) iteration method is the best in this
example.
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Table 2 Numerical
comparisons about the
mentioned algorithms for
Example 2

Method ALI LI MLI (s = 4) MLI (s = 6)

ξ = 0.2 IT 9 18 7 7

CPU 0.4143 0.4815 0.3546 0.428982

RES 7.47e−13 7.47e−13 1.29e−13 5.77e−14

ξ = 0.5 IT 10 19 9 9

CPU 0.4753 0.4879 0.4100 0.5001

RES 1.88e−13 8.10e−13 7.52e−14 4.90e−14

ξ = 1.0 IT 11 21 11 11

CPU 0.5108 0.5337 0.4686 0.6479

RES 2.25e−13 8.40e−13 2.97e−13 2.27e−13

Example 2 (see [2]) Consider the NARE (1), for which

A = D =

⎛
⎜⎜⎜⎜⎝

3 −1

3
. . .

. . . −1
3

⎞
⎟⎟⎟⎟⎠ ∈ �n×n, B = In and C = ξ In

with ξ > 0 a given constant. Here, In is the n × n identity matrix.

We take n = 256 and X0 = 0, and change the problem parameter ξ in our imple-
mentations. The numerical results for this example are listed in Table 2.

From Table 2, we observe that all iterations can converge rapidly to the exact
minimal nonnegative solution of the NARE (1) with high accuracy. According to the
iteration step, the MLI (s = 4, 6) iteration method is the least. Besides, the iteration
steps of the LI iteration method are twice of the ALI iteration method and the iteration
steps of the MLI (s = 4, 6) iteration method are nearly to the ALI iteration method.
According to the computing times, the MLI (s = 4) iteration method is almost the
least and the MLI (s = 6) iteration method is almost longest. With respect to the
computing efficiency, the LI iteration method is as well as the ALI iteration method.
Therefore, the MLI (s = 4) iteration method outperforms the ALI and LI iteration
methods in large matrices computation. Moreover, when ξ or C becomes large, the
iteration numbers and computing time of the LI and MLI (s = 4, 6) iteration methods
are almost fixed. This shows that the LI and MLI iteration methods could successfully
solve the NARE (1).

Example 3 (see [2]) Consider the NARE (1), for which A, B, C and D are generated
according to the following rule: first, generate and save a random 1000 × 1000 non-
zero matrix R by using rand (1000, 1000); then set W = diag(Re) − R, with e =
(1, 1, . . . , 1)T ∈ �1000; and finally, for a given positive constant κ , define

D = W (1 : 500, 1 : 500) + κ I, A = W (501 : 1000, 501 : 1000) + κ I,

B = −W (501 : 1000, 501 : 1000), C = −ξW (1 : 500, 501 : 1000)
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Table 3 Numerical
comparisons about the
mentioned algorithms for
Example 3 with κ=10

Method ALI LI MLI(s = 4) MLI(s = 6)

ξ = 0.2 IT 15 30 11 11

CPU 3.6381 4.1863 2.8072 3.4487

RES 1.04e−13 8.20e−13 1.23e−13 1.03e−13

ξ = 0.5 IT 19 37 15 16

CPU 4.0860 5.1156 3.8298 4.1852

RES 4.18e−13 9.45e−13 5.88e−13 4.50e−13

ξ = 1.0 IT 50 97 49 46

CPU 11.6078 14.4417 11.7070 11.5908

RES 7.81e−13 9.86e−13 9.57e−13 7.08e−13

where ξ is a positive constant. Note that the so-generated matrix W is a nonsingular
M-matrix, and A, B,C and D are 500 × 500 matrices with A, D being non singular
M-matrices and B,C being nonnegative matrices,respectively.

We take X0 = 0, κ = 10. The numerical results for this example are listed in
Table 3.

From Table 3, we see that all iterations can converge rapidly to the exact minimal
nonnegative solution of the NARE (1) with high accuracy. According to the iteration
step, theMLI (s = 4, 6) iteration method is the least. Besides, the iteration steps of the
LI iteration method are almost twice of the ALI iteration method again. According to
the computing times, the MLI (s = 4) iteration method or the MLI (s = 6) iteration
method is the least. With respect to the computing efficiency, the LI iteration method
is as well as the ALI iteration method. The MLI (s = 4, 6) and ALI iteration methods
outperform the LI iteration methods in large matrices computation. Moreover, when
ξ or C becomes large, the iteration numbers and computing time of the LI and MLI
(s = 4, 6) iteration methods are almost fixed. This shows that the LI andMLI iteration
methods could successfully solve the NARE (1) again.

6 Conclusions

Theoretical analysis and numerical implementations have shown that the LI and MLI
iteration methods are feasible and effective solvers for the NARE (1). The LI iteration
method is as well as the ALI iteration method. The iteration steps of the LI iteration
method may be twice of the ALI iteration method according to iteration equalities (3),
(4) and (6). In addition, the MLI iteration method has further reduced the computing
cost and improved the convergence rate of the LI iteration method. According to the
above three examples, theMLI (s = 6) andMLI (s = 4) iteration methods can do bet-
ter in medium-sized matrices. Even though setting α ≥ max{ max

1≤i≤m
{aii }, max

1≤ j≤n
{d j j }}

and s = 4, 6 can get a goodMLI iteration methods, the choice of a practically optimal
parameter α and s are considerably difficult in the viewpoints of both theory and appli-
cation. Finally, we know that α ≥ max

1≤i≤n
{dii } also can keep the convergence property

of the LI and MLI iteration methods according to the Sect. 4.
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